Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell.
نویسندگان
چکیده
Rhizobium-made Nod factors induce rapid changes in both Ca(2+) and gene expression. Mutations and inhibitors that abolish Nod-factor-induced Ca(2+) spiking block gene induction, indicating a specific role for Ca(2+) spiking in signal transduction. We used transgenic Medicago truncatula expressing a "cameleon" Ca(2+) sensor to assess the relationship between Nod-factor-induced Ca(2+) spiking and the activation of downstream gene expression. In contrast to ENOD11 induction, Ca(2+) spiking is activated in all root-hair cells and in epidermal or pre-emergent root hairs cells in the root tip region. Furthermore, cortical cells immediately below the epidermal layer also show slow Ca(2+) spiking and these cells lack Nod-factor-induced ENOD11 expression. This indicates a specialization in nodulation gene induction downstream of Nod-factor perception and signal transduction. There was a gradient in the frequency of Ca(2+) spiking along the root, with younger root-hair cells having a longer period between spikes than older root hairs. Using a Ca(2+)-pump inhibitor to block Ca(2+) spiking at various times after addition of Nod factor, we conclude that about 36 consecutive Ca(2+) spikes are sufficient to induce ENOD11-GUS expression in root hairs. To determine if the length of time of Ca(2+) spiking or the number of Ca(2+) spikes is more critical for Nod-factor-induced ENOD11 expression, jasmonic acid (JA) was added to reduce the rate of Nod-factor-induced Ca(2+) spiking. This revealed that even when the period between Ca(2+) spikes was extended, an equivalent number of Ca(2+) spikes were required for the induction of ENOD11. However, this JA treatment did not affect the spatial patterning of ENOD11-GUS expression suggesting that although a minimal number of Ca(2+) spikes are required for Nod-factor-induced gene expression, other factors restrict the expression of ENOD11 to a subset of responding cells.
منابع مشابه
A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors.
Lipochitooligosaccharide nodulation factors (NFs) secreted by endosymbiotic nitrogen-fixing rhizobia trigger Ca(2+) spiking in the cytoplasmic perinuclear region of host legume root hairs. To determine whether NFs also elicit Ca(2+) responses within the plant cell nucleus we have made use of a nucleoplasmin-tagged cameleon (NupYC2.1). Confocal microscopy using this nuclear-specific calcium repo...
متن کاملA Nuclear-Targeted Cameleon Demonstrates Intranuclear Ca Spiking in Medicago truncatula Root Hairs in Response to Rhizobial Nodulation Factors
Lipochitooligosaccharide nodulation factors (NFs) secreted by endosymbiotic nitrogen-fixing rhizobia trigger Ca spiking in the cytoplasmic perinuclear region of host legume root hairs. To determine whether NFs also elicit Ca responses within the plant cell nucleus we have made use of a nucleoplasmin-tagged cameleon (NupYC2.1). Confocal microscopy using this nuclear-specific calcium reporter has...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملMastoparan activates calcium spiking analogous to Nod factor-induced responses in Medicago truncatula root hair cells.
The rhizobial-derived signaling molecule Nod factor is essential for the establishment of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Nod factor perception and signal transduction in the plant involve calcium spiking and lead to the induction of nodulation gene expression. It has previously been shown that the heterotrimeric G-protein agonist mastoparan can activate nodulation gen...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2006